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ABSTRACT 

 
Conditional volatility models are used in tourism demand studies to model the effects of shocks 

on demand volatility, which arise from changes in political, social or economic conditions. 

Seasonal ARIMA models have been widely employed for forecasting purpose but little attention 

has been given to examining the forecast accuracy of conditional volatility models. This study 

investigates whether the conditional volatility models can outperform seasonal ARIMA models 

in predicting tourist arrivals to Australia. One key result is that seasonality exists in the 

volatility of tourist arrivals to Australia. Hence, this paper adds a new dimension in the literature 

of modelling seasonality in tourism demand, by incorporating seasonal effects into conditional 

volatility models. Using data on tourist arrivals from USA, UK, Japan and New Zealand to 

Australia, this study found that conditional volatility models outperform seasonal ARIMA 

models in forecasting for all countries except UK. 
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INTRODUCTION 

 

Several empirical studies have found that tourism demand data exhibit volatility (Shareef and 

McAleer, 2005) and specifically, a negative shock can have more impact on the volatility in 

Japanese tourist arrivals to Australia than a positive shock (Chan et al., 2005). Furthermore, 

according to Kim and Wong (2006), the volatility in tourism demand data can be influenced by 

the effects of news shocks such as economic crises, outbreak of deadly diseases, natural 

disasters and war. Therefore, the tourism literature concludes that modelling the volatility in 

tourism demand is important because it can capture the occurrence of unexpected events. 

 

Conventionally, volatility of tourism demand is modelled using conditional volatility models. 

The models that appeared in tourism literature are univariate generalised autoregressive 

conditional heteroscedasticity (GARCH), univariate asymmetric GARCH (or GJR), vector 

autoregressive moving average GARCH (VARMA-GARCH) and VARMA-asymmetry 

GARCH (VARMA-AGARCH) models (Chan et al., 2005; Kim and Wong, 2006; Shareef and 

McAleer, 2005; Shareef and McAleer, 2007).  

 

Despite that modelling demand volatility has emerged in the literature, there are two areas 

which still require attention. First, seasonality exists in tourism demand volatility data. Figure 1 

exhibits the volatility of tourist arrivals to Australia and find that seasonal patterns exist and 

vary across countries of origin. For instance, from 1991 to 2007, the highest spikes in tourist 

arrivals from New Zealand and United Kingdom occurred in the months of December and 

March, respectively. Hence, the figure suggests that incorporating seasonal dummies in the 

conditional volatility models are necessary to capture these effects. Second, there is a dearth of 

research assessing the forecast accuracy of conditional volatility models. As predicting tourism 

demand is very important in business planning, it is imperative to investigate whether 

conditional volatility models can outperform other competing models in forecasting tourism 

demand data. 

 

 

 



Figure 1 

Volatility of the log tourist arrivals to Australia for total and four countries (1991 to 2007) 
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The purposes of this paper are as follows. First, as seasonality exists in tourism demand data, 

this paper attempts to modify the traditional conditional volatility models by incorporating 

seasonal effects into the models. Thereafter, the models will be employed for the purpose of 

out-sample forecasting. Second, as seasonal ARIMA models have been widely employed for 

forecasting tourism demand to Australia (Kim, 1999; Kim and Moosa, 2001; Kulendran and 

Wong, 2005; and Lim and McAleer, 2002), this study investigates whether conditional volatility 

models can outperform seasonal ARIMA models in terms of forecasting tourist arrivals to 

Australia. The conditional volatility models employed in this research are univariate GARCH 

and GJR models. 

 

The data employed are the logarithm of the monthly short-term tourist arrivals from Japan, New 

Zealand, United Kingdom, USA and all source countries to Australia from January 1991 to May 

2006. The logarithm data are used because, based on Chan et al. (2005), data on logarithms of 



tourist arrivals to Australia are integrated to zero after taking its first difference. For forecasting 

purpose, the data between June 2006 and May 2007 are used.  

 

 

METHODOLOGY 

 
In a tourism demand data series, the conditional variance may not be constant. To tackle the 

problem of heteroscedastic conditional variances, Engle (1982) developed a volatility model 

which incorporated all past errors. Bollerslev (1986) further modified Engle’s idea by including 

lagged conditional volatility into the volatility function.   

 

Given the univariate conditional mean, 
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where t = 1,…,n and )1,0(~ iidtη , yt = series of returns, Ft-1 = past information available to time 

t and 
tε  = error term with stochastic process, the univariate Generalised Autoregressive 

Conditional Heteroscedesticity (GARCH) model is given as follows: 
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where ht = conditional variance, and ht > 0 when ω > 0, α > 0 and β > 0.  Note that α and α+β 

represent the short term and long term persistence of shocks to returns. ω = constant variance. 

 

The simpler model that captures the asymmetric impacts of good and bad news is the GJR(1,1) 

model developed by Glosten et al. (1993) as follows: 
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In terms of the persistence of shocks, the impact of short run positive and negative shocks is α  

and α + γ respectively. When tη  follows a symmetric distribution, the short-run persistence of 

shocks is γα 5.0+  and long run persistence of shocks is γα 5.0+ + β.   

 

To incorporate seasonal effects into the GARCH and GJR models, this paper attempts to include 

seasonal dummies in Equation (2) and (3).  

 

Figure 2 illustrates the methodology of specification of conditional volatility models.  

 

 

 

 

 

 

 

 



Figure 2 

Flow chart of methodology 

 

 
 

 

EMPIRICAL RESULTS 

 

Estimates of GARCH and GJR models 

 

In Tables 1 and 2, AR(1) coefficients in the conditional mean of GARCH and GJR models are 

statistically significant for Japan, New Zealand and Total, indicating a high persistence of 

tourist visitations to Australia.  However, for moving average components, only the data on 

tourist arrival from New Zealand show highly significant. This implies that unexpected shocks 

in the previous period can influence the arrivals of New Zealand tourists in the current period. 

Furthermore, Tables 1 and 2 also reveal that tourist arrivals to Australia are highly seasonal.  

 

In terms of the conditional volatility estimates for the GARCH model (Table 3), the ARCH 

effect (or the short-run shock persistence) is positive and only significant for New Zealand. This 

shows that a positive shock will increase the variation of tourist arrivals from New Zealand and 

vice-versa for negative shocks. Conversely, the β  (or GARCH effects) are significant for all 

countries, except Japan. The signs of β are positive, as anticipated, for UK, USA and Total, but 

not for New Zealand. This study also discovers that seasonal effects exist in the conditional 

volatility of Japan, New Zealand, UK and USA (Table 3), which indicating that the variations in 

tourist arrivals from these source countries to Australia can be caused by seasonality.  

   

The conditional volatility estimates for GJR model in Table 4 reveal that α (or ARCH effects) 

for Japan and Total are significant but the signs are not consistent with expectations. For the 

GARCH effects, the results for USA and Total are significant. However, the sign of β  for USA 

is negative, which does not satisfy the condition of positivity of conditional variance. In 
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addition, the threshold effects for New Zealand and Total are significant at 5% and 1%, 

respectively, and the impacts of a negative shock on the variations of both sets of data are 

similar. This implies that a negative shock will result in less fluctuation in Total and New 

Zealand tourist arrivals to Australia. This study could not generate reliable estimates for 

seasonal dummies in the conditional volatility of GJR model, which requires further 

investigation.  

 

In this research, the estimation of GARCH and GJR models has undergone rigorous diagnostic 

tests to ensure there are no issues of serial correlation and non-normality in the estimated 

standardized residuals (Table 5). Given this fact, the conditional mean and variance estimates in 

Table 1 to 4 are considered to be robust. 

  

Forecast accuracy of conditional volatility models   

 

By comparing forecast accuracy between conditional volatility and ARIMA models, Table 6 

shows that the forecast errors of GARCH and GJR models for Japan, UK and Total are lower 

than for the ARIMA model. This implies that conditional volatility models perform better in 

forecasting for these data series. For New Zealand data, ARIMA model outperforms GARCH 

models but under-performs GJR models. For UK data, both GARCH and GJR models generate 

less accurate forecasts than ARIMA models.  

 

Forecast errors of GARCH models for UK and Total are lower than GJR models (Table 6). This 

outcome implies that GARCH models can predict better than GJR models for these three data 

series. Conversely, for Japan, New Zealand and USA data, GJR models provide more accurate 

forecast than GARCH models.  

 

 

CONCLUSION  

 

For the first time, this study demonstrates that seasonality exists in the volatility of tourist 

arrivals to Australia. To capture the seasonal effects, seasonal dummy variables were included 

in the conditional volatility models. Furthermore, given that seasonal ARIMA models have been 

widely employed in forecasting tourist arrivals to Australia, this paper intends to investigate 

whether conditional volatility models provide better forecasts than seasonal ARIMA models. 

 

The results showed that seasonal dummy variables in the conditional mean of GARCH and GJR 

models are statistically significant for all source countries. Furthermore, the empirical results of 

GARCH models revealed that seasonal dummy variables were significant in the conditional 

variances for GARCH model for Japan, New Zealand, United Kingdom and USA data, leading 

to the conclusion that seasonality exists in the volatility of tourist arrivals to Australia.  

 

In terms of comparing forecast performance of conditional volatility and ARIMA models, this 

study found that the former model forecast better for all source countries except UK. 

Furthermore, by evaluating forecast accuracy between GARCH and GJR models, the empirical 

results showed that GJR can generate relatively more accurate forecasts for Japan, New Zealand 

and USA data.  

 

Overall, this paper concludes that conditional volatility models can outperform seasonal 

ARIMA models in predicting tourist arrivals to Australia. Nevertheless, future research should 

compare the forecast accuracy of conditional volatility models with econometric models.        

 

 
 



Table 1 

Estimation of conditional mean for GARCH model 

Data Constant AR(1) MA(1) SMA(12) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Japan 10.9681 0.7128     0.1089    0.2053 0.2797    0.102 

 0.0258 0.0382     0.0167    0.002 0.0209    0.0209 

                 

NZ 11.1021 0.7747 -0.0419 0.8297     -0.1139 -0.1092   0.0274  -0.1374  

 0.0651 0.043 0.081 0.0326     0.0319 0.0432   0.0364  0.0294  

                 

UK 0.6627       -0.7592 -1.4638 -1.7104 -1.0253 -1.3508 -1.1854 -0.5088  0.4481 

 0.0265       0.0352 0.0342 0.0469 0.0403 0.0367 0.0405 0.0484  0.0453 

                 

USA 10.3865    -0.1689    -0.1479 0.0801 0.1129  -0.1044    

 0.0557    0.0162    0.0313 0.0403 0.0398  0.0369    

                 

Total 12.9948 0.9812 -0.5983   0.1028 0.0747 -0.0442 -0.2038 -0.1368 0.0758  -0.0783  0.0781 0.2770 

 0.1167 0.0062 0.0761   0.0141 0.0123 0.0139 0.0135 0.0118 0.0121  0.0138  0.0117 0.0105 

                                  

Note: The two entries corresponding to each variable are their estimates (in bold) and their Bollerslev and Wooldridge (1992) robust standard errors, respectively. 

          AR(p) denotes autoregressive at lag p. 

          MA(q) denotes moving average at lag q. 

          SMA(Q) denotes seasonal moving average at lag Q. 

          S1 to S12 signify seasonal dummies from January to December.  

          The AR, MA, SMA and seasonal dummies terms above are statistically significant at 5%. 

          In the interests of presentation, those insignificant regressors are not reported here. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 

Estimation of conditional mean for GJR model 

Data Constant AR(1) AR(2) MA(1) SMA(12) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Japan 10.9206 0.7452      0.1298    0.2017 0.2460    0.1149 

 0.0279 0.0365      0.0144    0.02 0.0203    0.0087 

                  

NZ 11.2708 0.9806  -0.5892 0.6422 -0.3861 -0.4488 -0.1534  -0.1499 -0.0763   0.0608  -0.1157  

 0.2383 0.0134  0.0615 0.0515 0.0297 0.0281 0.0373  0.032 0.034   0.0255  0.0321  

                  

UK 0.6634        -0.7522 -1.4594 -1.7065 -1.0066 -1.3557 -1.2038 -0.5364  0.4348 

 0.0251        0.0359 0.0342 0.0481 0.0368 0.0355 0.0405 0.0454  0.0453 

                  

USA 10.3884 -0.1249 0.8082 0.9957  -0.1873    -0.1776  0.1705  -0.1761    

 0.0548 0.0445 0.0328 0.0237  0.0221    0.0134  0.0218  0.0218    

                  

Total 12.8855 0.9803  -0.5114   0.0967 0.0744 -0.0448 -0.2090 -0.1346 0.0772  -0.0715  0.0820 0.2803 

 0.0935 0.0032  0.0639   0.0124 0.0106 0.0131 0.0125 0.0111 0.0114  0.0121  0.0093 0.0088 

                                    

Note: The two entries corresponding to each variable are their estimates (in bold) and their Bollerslev and Wooldridge (1992) robust standard errors, respectively. 

         AR(p) denotes autoregressive at lag p. 

         MA(q) denotes moving average at lag q. 

         SMA(Q) denotes seasonal moving average at lag Q. 

         S1 to S12 signify seasonal dummies from January to December. 

         The AR, MA, SMA and seasonal dummies terms above are statistically significant at 5%. 
         In the interests of presentation, those insignificant regressors are not reported here. 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Estimation of conditional volatility for GARCH model 

Data ω  α  β  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Japan 0.0065 0.1405 0.2332 -0.0247* -0.0120* -0.0228* -0.0055*   -0.0342* -0.0220* -0.0208* -0.0106* -0.0144* -0.0167* -0.0119* 

 0.0042 0.1852 0.4589 0.0159 0.0158 0.0157 0.0175  0.0276 0.0155 0.0152 0.0151 0.0157 0.0159 0.0163 

                

NZ 0.0084* 0.2763* -0.3518+  -0.0612* -0.0460* -0.0563* -0.0678* -0.0484* -0.0626* -0.0664* -0.0613* -0.0628* -0.0666* -0.0602* 

 0.0017 0.0767 0.146  0.0132 0.0134 0.0127 0.0119 0.0137 0.0128 0.0120 0.0124 0.0123 0.0120 0.0125 

                

UK  0.0034* 0.0337 0.9232*    -0.029* 
        

 0.0011 0.0188 0.05    0.0047         

                

USA  0.0287* 0.0366 0.3319+ -0.0390*  -0.0355*          

 0.0057 0.0514 0.1564 0.0049 
 

0.004  
        

                

Total 0.0006 0.0832 0.6913+             

 0.0007 0.0824 0.3119  
 

  
        

          
  

    
                

Note: ω = constant variance, α = ARCH effect, β = GARCH effect. The two entries corresponding to each variable are their estimates (in bold) and their Bollerslev and Wooldridge (1992) robust standard 

errors, respectively. S1, S3 and S4 are seasonal dummies for January, March and April, respectively. 

        *denotes significant at 1%. 

         + denotes significant at 5%. 

        In the interests of presentation, some of the insignificant seasonal dummy variables are not reported here. 

 



          Table 4 

Estimation of conditional volatility for GJR model 

Data ω  α  γ  β  

Japan 0.0058 -0.1089* 0.2852 0.3593 

 0.0031 0.0189 0.2233 0.3658 

     

NZ 0.0074* -0.0104 0.4018+ -0.1403 

 0.0014 0.0443 0.1669 0.0973 

     

UK 0.0087 0.2976 -0.2840 0.4876 

 0.0062 0.1545 0.1469 0.3276 

     

USA 0.0355* 0.0409 -0.0631 -0.9958* 

 0.0037 0.0442 0.0538 0.0288 

     

Total 0.0002+ -0.1075* 0.2573* 0.9108* 

 0.0001 0.0294 0.0816 0.0562 

          

Note: ω = constant variance, α = ARCH effect, γ = threshold effect, 

          β = GARCH effect. The two entries corresponding to each variable 

          are their estimates (in bold) and their Bollerslev and Wooldridge (1992)  

          robust standard errors, respectively. 

          * denotes significant at 1%. 

         + denotes significant at 5%. 

 

 

          Table 5 

                       Diagnostic tests of GARCH and GJR models 

Diagnostic tests on standardised residuals 

Data Models 
Ho: No serial 

correlationa Ho: Normalityb 

Japan GARCH 1.5844 [0.208] 1.1684 [0.5576] 

 GJR 2.3054 [0.129] 1.0414 [0.5941] 

    

NZ GARCH 5.5763 [0.018] 2.6336 [0.268] 

 GJR 4.7289 [0.03] 0.1829 [0.9126] 

    

UK GARCH 1.2448 [0.265] 3.7821 [0.1509] 

 GJR 0.3926 [0.531] 2.6552 [0.2651] 

    

USA GARCH 1.8159 [0.178] 1.1445 [0.5642] 

 GJR 2.1282 [0.145] 7.6344 [0.022] 

    

Total GARCH 3.0007 [0.083] 0.2166 [0.8974] 

 GJR 2.1198 [0.145] 1.0073 [0.6043] 

        

Note: (a) The test statistics are obtained from Q-statistics of collegram of standardized residuals. 

          (b) The test statistics are based on Jarque-Bera of normality tests. 

          Figures in brackets are p-value. 

 

 

 



       Table 6 

Summary of forecast errors for ARIMA and conditional volatility models 

Models 

Data Forecast error ARIMA GARCH GJR 

Japan RMSE 1.4716 0.1724 0.1603 

 MAE 1.2446 0.1298 0.1228 

 MAPE 11.3687 1.1947 1.1263 

 Theil coefficient 0.0634 0.0078 0.0073 

     

NZ RMSE 0.32 0.3474 0.1727 

 MAE 0.2821 0.2725 0.1379 

 MAPE 2.5636 2.5284 1.268 

 Theil coefficient 0.0148 0.0158 0.0079 

     

UK RMSE 0.5494 1.1127 1.1486 

 MAE 0.4507 0.7565 0.775 

 MAPE 4.1948 7.1065 7.2719 

 Theil coefficient 0.0266 0.0528 0.0545 

     

USA RMSE 3.0687 0.244 0.2388 

 MAE 2.6824 0.2012 0.1976 

 MAPE 25.7913 1.9662 1.9279 

 Theil coefficient 0.131 0.0118 0.0116 

     

Total RMSE 0.1729 0.0695 0.0846 

 MAE 0.1466 0.0549 0.0682 

 MAPE 1.14 0.4326 0.5328 

 Theil coefficient 0.0068 0.0027 0.0033 
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